Embeddings of κ-metrizable spaces into function spaces
نویسندگان
چکیده
منابع مشابه
compactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولEmbeddings of Proper Metric Spaces into Banach Spaces
We show that there exists a strong uniform embedding from any proper metric space into any Banach space without cotype. Then we prove a result concerning the Lipschitz embedding of locally finite subsets of Lp-spaces. We use this locally finite result to construct a coarse bi-Lipschitz embedding for proper subsets of any Lp-space into any Banach space X containing the l n p ’s. Finally using an...
متن کاملBilipschitz Embeddings of Metric Spaces into Euclidean Spaces
When does a metric space admit a bilipschitz embedding into some finite-dimensional Euclidean space? There does not seem to be a simple answer to this question. Results of Assouad [A1], [A2], [A3] do provide a simple answer if one permits some small (“snowflake”) deformations of the metric, but unfortunately these deformations immediately disrupt some basic aspects of geometry and analysis, lik...
متن کاملCoarse Embeddings of Metric Spaces into Banach Spaces
There are several characterizations of coarse embeddability of a discrete metric space into a Hilbert space. In this note we give such characterizations for general metric spaces. By applying these results to the spaces Lp(μ), we get their coarse embeddability into a Hilbert space for 0 < p < 2. This together with a theorem by Banach and Mazur yields that coarse embeddability into l2 and into L...
متن کاملEmbeddings of Locally Finite Metric Spaces into Banach Spaces
We show that if X is a Banach space without cotype, then every locally finite metric space embeds metrically into X.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology and its Applications
سال: 1995
ISSN: 0166-8641
DOI: 10.1016/0166-8641(94)00113-h